dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Menneske 2038613

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
arkietech



Joined: 31 Jul 2008
Posts: 1734
Location: Northwest Arkansas USA

PostPosted: Wed Oct 10, 2012 5:13 am    Post subject: Menneske 2038613 Reply with quote

Code:

 *-----------*
 |...|...|7..|
 |.4.|185|...|
 |..9|.7.|.3.|
 |---+---+---|
 |.7.|.1.|.9.|
 |.93|2.7|18.|
 |.8.|.3.|.2.|
 |---+---+---|
 |.2.|.6.|9..|
 |...|321|.7.|
 |..5|...|...|
 *-----------*
 


Play/Print this puzzle online
Back to top
View user's profile Send private message
Clement



Joined: 24 Apr 2006
Posts: 686
Location: Dar es Salaam Tanzania

PostPosted: Wed Oct 10, 2012 7:53 am    Post subject: Menneske 2038613 Reply with quote

Code after Basics
Code:

+------------+------------+------------+
| 268  1 268 | 469 49 3   | 7   5  48  |
| 3    4 7   | 1   8  5   | 2   6  9   |
| 68   5 9   | 46  7  2   | 48  3  1   |
+------------+------------+------------+
| 245-6 7 2-6  | 8   1  D46  | 3   9  456 |
| 46   9 3   | 2   5  7   | 1   8  46  |
| 1456 8 A16  | 469 3  4-69 | 456 2  7   |
+------------+------------+------------+
| 7    2 B18  | 5   6  C48  | 9   14 3   |
| 9    6 4   | 3   2  1   | 58  7  58  |
| 18   3 5   | 7   49 489 | 26  14 26  |
+------------+------------+------------+
XY-Chain ABCD: r6c3=6; r4c13<>6, r6c6<>6
(6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6; r4c13<>6, r6c6<>6 solves it.
Back to top
View user's profile Send private message AIM Address
tlanglet



Joined: 17 Oct 2007
Posts: 2461
Location: Northern California Foothills

PostPosted: Wed Oct 10, 2012 2:00 pm    Post subject: Reply with quote

My initial solution was the same as that already posted by Clement so I looked for an alternative.

I did spot an almost hidden pair AHP(45)r46c1=(4)r5c1 which set r5c1=4 but, to my surprise and disappointment, it did not advance the puzzle.

So, I settled for a variation of my original solution:

5r6c7=(5-1)r6c1=r6c3-(1=8=4)r7c36-r46c6=r6c4-(4=5)r6c7 => 5r6c7

Ted
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1734
Location: Northwest Arkansas USA

PostPosted: Wed Oct 10, 2012 2:25 pm    Post subject: Reply with quote

I like wings.

Code:

 *-----------------------------------------------------------*
 | 268   1     268   | 469   49    3     | 7     5     48    |
 | 3     4     7     | 1     8     5     | 2     6     9     |
 | 68    5     9     | 46    7     2     | 48    3     1     |
 |-------------------+-------------------+-------------------|
 | 245-6 7     2-6   | 8     1    a46    | 3     9     456   |
 | 46    9     3     | 2     5     7     | 1     8     46    |
 | 1456  8    c16    | 49    3     49-6  | 45    2     7     |
 |-------------------+-------------------+-------------------|
 | 7     2    b18    | 5     6    b48    | 9     14    3     |
 | 9     6     4     | 3     2     1     | 58    7     58    |
 | 18    3     5     | 7     49    489   | 6     14    2     |
 *-----------------------------------------------------------*
als xy-wing
(6=4)r4c6-(4=1)als:r7c36-(1=6)r6c3 => -6r4c13,r6c6; stte


Play/Print this puzzle online
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3184
Location: near Detroit, Michigan, USA

PostPosted: Wed Oct 10, 2012 6:32 pm    Post subject: Reply with quote

Code:
+----------------+----------------+----------------+
| 268  1    268  | 49+6 49   3    | 7    5    48   |
| 3    4    7    | 1    8    5    | 2    6    9    |
| 68   5    9    | 46   7    2    | 48   3    1    |
+----------------+----------------+----------------+
| 2456 7    26   | 8    1    46   | 3    9    456  |
| 46   9    3    | 2    5    7    | 1    8    46   |
| 1456 8   C16   | 49   3  A49+6  | 45   2    7    |
+----------------+----------------+----------------+
| 7    2    8-1  | 5    6    48   | 9    14   3    |
| 9    6    4    | 3    2    1    | 58   7    58   |
|D18   3    5    | 7    49 B49+8  | 6    14   2    |
+----------------+----------------+----------------+

Note the DP 49 in R169C456.

One way to prevent the DP is that AB is 68, forming an XY-wing with CD. R7C3 <>1. (Which solves the puzzle.)

Now, how to make an argument about R1C4 <6>?

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5182
Location: Rochester, NY, USA

PostPosted: Thu Oct 11, 2012 2:14 am    Post subject: Reply with quote

I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3184
Location: near Detroit, Michigan, USA

PostPosted: Thu Oct 11, 2012 2:28 am    Post subject: Reply with quote

Marty R. wrote:
I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6.

r6c6 = 6 implies r4c6 =6? How can that be? They are in the same column.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5182
Location: Rochester, NY, USA

PostPosted: Thu Oct 11, 2012 2:44 am    Post subject: Reply with quote

You beat me to it. I was going to delete the post, but you're too fast and (justifiably) untrusting. Embarassed Laughing
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3855

PostPosted: Thu Oct 11, 2012 5:15 pm    Post subject: Reply with quote

keith wrote:
Marty R. wrote:
I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6.

r6c6 = 6 implies r4c6 =6? How can that be? They are in the same column.

If r6c6=6 is false, then it's conceivable that it could lead to r4c6=6.

Guess what, r6c6=6 is false. Unfortunately, Marty doesn't list his derived chains.
Back to top
View user's profile Send private message
Luke451



Joined: 20 Apr 2008
Posts: 310
Location: Southern Northern California

PostPosted: Thu Oct 11, 2012 10:03 pm    Post subject: Reply with quote

keith wrote:
Marty R. wrote:
I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6.

r6c6 = 6 implies r4c6 =6? How can that be? They are in the same column.


Code:
 *-----------------------------------------------------------*
 | 268   1     268   | 469   49    3     | 7     5     48    |
 | 3     4     7     | 1     8     5     | 2     6     9     |
 | 68    5     9     | 46    7     2     | 48    3     1     |
 |-------------------+-------------------+-------------------|
 | 2456  7     26    | 8     1     46    | 3     9     456   |
 | 46    9     3     | 2     5     7     | 1     8     46    |
 | 1456  8     16    | 49    3     469   | 45    2     7     |
 |-------------------+-------------------+-------------------|
 | 7     2     18    | 5     6     48    | 9     14    3     |
 | 9     6     4     | 3     2     1     | 58    7     58    |
 | 18    3     5     | 7     49    489   | 6     14    2     |
 *-----------------------------------------------------------*

(6)r6c6-(6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6

So Marty, if you can remember the other two paths, I'd say you're exonerated Smile
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 397

PostPosted: Thu Oct 11, 2012 10:12 pm    Post subject: Reply with quote

Luke451 wrote:

(6)r6c6-(6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6

So Marty, if you can remember the other two paths, I'd say you're exonerated Smile

However, proving r6c6<>6 doesn't make r4c6=6 an "outcome".
Back to top
View user's profile Send private message
Luke451



Joined: 20 Apr 2008
Posts: 310
Location: Southern Northern California

PostPosted: Thu Oct 11, 2012 10:27 pm    Post subject: Reply with quote

ronk wrote:
Luke451 wrote:

(6)r6c6-(6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6

So Marty, if you can remember the other two paths, I'd say you're exonerated Smile

However, proving r6c6<>6 doesn't make r4c6=6 an "outcome".

Yah, sure. One would have to prove the same "outcome" from (6)r1c4 and (8)r9c6.

@ Ted: I'm gonna start calling you "Extra Node Langlet." Wink
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group