| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Sat Mar 03, 2012 9:29 pm    Post subject: au 3/3/12 tough | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  *-----------*
 
 |...|..7|...|
 
 |.3.|..1|.6.|
 
 |...|.8.|72.|
 
 |---+---+---|
 
 |..4|.76|...|
 
 |..9|...|5..|
 
 |...|12.|8..|
 
 |---+---+---|
 
 |.52|.3.|...|
 
 |.8.|6..|.9.|
 
 |...|4..|...|
 
 *-----------*
 
 *-----------------------------------------------------------*
 
 | 125   4     158   | 29    6     7     | 19    5-8   3     |
 
 | 27    3     7-8   | 29    5     1     | 4     6     89    |
 
 | 156   9     156   | 3     8     4     | 7     2     15    |
 
 |-------------------+-------------------+-------------------|
 
 | 8     12    4     | 5     7     6     | 19    3     129   |
 
 | 167   1267  9     | 8     4     3     | 5     17    126   |
 
 | 35    67    35    | 1     2     9     | 8     47    46    |
 
 |-------------------+-------------------+-------------------|
 
 | 9     5     2     | 7     3     8     | 6     14    14    |
 
 | 4     8     37    | 6     1     25    | 23    9     57    |
 
 | 1367  167   1367  | 4     9     25    | 23    58    578   |
 
 *-----------------------------------------------------------*
 
XY-Chain r8c3<>7 => r1c3= 18
 
XY-Wing 198 => r1c8,r2c3<>8
 
 
(7=8)r2c3-(8-9)r2c9-(9=1)r1c7-(1=5)r3c9-(5=7)r8c9
 
=> r8c3<>7 => r8c3=3 => r6c3=5 =>
 
(8=1)r1c3-(9=1)r1c7-(9-8)r2c9 => r1c8,r2c3<>8
 
 
Can this be displayed in Eureka notation? or more simply | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		SudoQ
 
 
  Joined: 02 Aug 2011 Posts: 127
 
  | 
		
			
				 Posted: Sun Mar 04, 2012 12:07 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Why not a tri-cell for a change!
 
 
 	  | Code: | 	 		  r1c3=1 ->                                      =>
 
    =8 -> r1c8=5 -> r3c9=1                     =>
 
    =5 -> r6c3=3 -> r8c3=7 -> r8c9=5 -> r3c9=1 => r1c7<>1 | 	  
 
 
/SudoQ | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Sun Mar 04, 2012 12:49 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Dan: This should come close to what you want. It's a network elimination made to look like a chain. It uses a lasso on cells r1c8 & r3c9. The (*) indicates where memory is used to make the []-chain work.
 
 
 	  | Code: | 	 		   +--------------------------------------------------------------+
 
 |  125   4     158   |  29    6     7     |  19    58    3     |
 
 |  27    3     78    |  29    5     1     |  4     6     89    |
 
 |  156   9     156   |  3     8     4     |  7     2     15    |
 
 |--------------------+--------------------+--------------------|
 
 |  8     12    4     |  5     7     6     |  19    3     129   |
 
 |  167   1267  9     |  8     4     3     |  5     17    126   |
 
 |  35    67    35    |  1     2     9     |  8     47    46    |
 
 |--------------------+--------------------+--------------------|
 
 |  9     5     2     |  7     3     8     |  6     14    14    |
 
 |  4     8     37    |  6     1     25    |  23    9     57    |
 
 |  1367  167   1367  |  4     9     25    |  23    58    578   |
 
 +--------------------------------------------------------------+
 
 # 52 eliminations remain
 
 
(8*)r1c3=[(5)r1c8=(5-1)r3c9=r1c7-(*81=5)r1c3-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9-r3c9=(5)r1c8]
 
  =>  r1c8<>8
 
________________________________________________________________________________________
 
 | 	  
 
As a network:
 
 
 	  | Code: | 	 		  (5)r1c8=(5-1)r3c9=r1c7-(1=5)r1c3-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9-r3c9=(5)r1c8  =>  r1c8<>8
 
                             ||
 
                      -(1=8)r1c3                                             =>  r1c8<>8
 
 | 	  
 
Using SudoQ's Kraken Cell: r1c3=158
 
 
 	  | Code: | 	 		  (8)r1c3                                             =>  r1c8<>8
 
(5)r1c3-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9-r3c9=(5)r1c8  =>  r1c8<>8
 
(1)r1c3-r1c7=(1=5)r3c9=(5)r1c8                      =>  r1c8<>8
 
 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sun Mar 04, 2012 1:42 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Dan, I don't know if you were looking for other solutions or just an answer to your question. I certainly can't answer the question.
 
 
XY-Wing (375), pivot r8c3, flightless with transport; r1c3<>5
 
XY-Wing (581), pivot r1c8; r1c7<>1 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		JC Van Hay
 
 
  Joined: 13 Jun 2010 Posts: 494 Location: Charleroi, Belgium
  | 
		
			
				 Posted: Sun Mar 04, 2012 8:18 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Also, written as a 7-SIS AAIC or AXYChain :
 
 
8r1c3=XY Chain[(1=5)r1c3-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9-(5=1)r3c9]-(1=9)r1c7-(9=8)r2c9 => 8r1c3=8r2c9 => -8r2c3.r1c8 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Sun Mar 04, 2012 11:18 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Marty R. wrote: | 	 		  Dan, I don't know if you were looking for other solutions or just an answer to your question. I certainly can't answer the question.
 
 
XY-Wing (375), pivot r8c3, flightless with transport; r1c3<>5
 
XY-Wing (581), pivot r1c8; r1c7<>1 | 	  I and others can  learn from all answers. Thanks.
 
 
With the help of JC's
 
 
(8)r1c3=XY Chain[(1=5)r1c3-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9-(5=1)r3c9]-(1=9)r1c7-(9=8)r2c9 => r1c8<>8
 
 
I have attempted to show Marty's in Eureka notation:
 
 
(1=58)r1c3-(5=3)r6c13-(3=7)r8c3-(7=5)r8c9-(5=1)r3c9 => r1c7<>1
 
 
If this is right Marty's is much simpler.
 
 
JC and Marty you have made my day! | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		JC Van Hay
 
 
  Joined: 13 Jun 2010 Posts: 494 Location: Charleroi, Belgium
  | 
		
			
				 Posted: Sun Mar 04, 2012 1:16 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | arkietech wrote: | 	 		  I have attempted to show Marty's in Eureka notation:
 
 
(1=[58)r1c38-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9]-(5=1)r3c9 => r1c7<>1
 
 
If this is right Marty's is much simpler. | 	  
 
To avoid a too condensed notation, I would have written, using [] to isolate the XY Chain ...
 
 
1r1c3=XY Chain[(5=8)r1c8-(8=5)r1c3-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9]-(5=1)r3c9 => -1r1c7.r3c13
 
 
Best regards, JC. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		ronk
 
 
  Joined: 07 May 2006 Posts: 398
 
  | 
		
			
				 Posted: Sun Mar 04, 2012 1:39 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | arkietech wrote: | 	 		  I have attempted to show Marty's in Eureka notation:
 
 
(1=58)r1c3-(5=3)r6c13-(3=7)r8c3-(7=5)r8c9-(5=1)r3c9 => r1c7<>1
 
 
If this is right Marty's is much simpler. | 	  
 
Without any intermediate exclusions, I don't see anything quite that simple. Using JC's notation for a kraken cell on a single line ...
 
 
(1)*r1c3=xy-chain[(5=8)r1c8-(8=5)*r1c3-(5=3)r6c3-(3=7)r8c3-(7=5)r8c9]-(5=1)r3c9 ==> (1)r1c3=(1)r3c9 ==> r1c7,r3c13<>1
 
 
The '*' highlights the usage and appearances of a tri-valued cell. Counting this as a single SIS, a 6-SIS is required compared to a 7-SIS stated elsewhere, so this could be said to be simpler.
 
 
However, Marty's two AICs with an intermediate exclusion require only seven strong inferences, four for the transported xy-wing and three for the other xy-wing. IMO it's considerably easier to understand his two xy-wings than the single AAIC written above. IOW I don't really understand the obsession to express puzzle solutions as a single step. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Sun Mar 04, 2012 2:33 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | ronk wrote: | 	 		  | IOW I don't really understand the obsession to express puzzle solutions as a single step. | 	  
 
 
It keeps my mind from growing stale.  
 
 
and besides it is fun. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		JC Van Hay
 
 
  Joined: 13 Jun 2010 Posts: 494 Location: Charleroi, Belgium
  | 
		
			
				 Posted: Sun Mar 04, 2012 2:40 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | ronk wrote: | 	 		  |  ... I don't really understand the obsession to express puzzle solutions as a single step. | 	  
 
In this particular puzzle, it is true that it is very hard to "beat" a 2 Wings (totalizing 6-SIS) solution (MW + HW or XYW)   | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |