| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Mon Dec 26, 2011 1:09 pm    Post subject: rh122611 | 
				     | 
			 
			
				
  | 
			 
			
				I liked the last puzzle-- here is another 	  | Code: | 	 		   *-----------*
 
 |.8.|..3|.1.|
 
 |..7|.1.|..2|
 
 |...|..2|4..|
 
 |---+---+---|
 
 |1.4|...|.2.|
 
 |...|5..|...|
 
 |.3.|...|5.9|
 
 |---+---+---|
 
 |..2|7..|...|
 
 |9..|.2.|3..|
 
 |.7.|4..|.8.|
 
 *-----------* | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Mon Dec 26, 2011 6:27 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				External analysis of 35 UR in boxes 78 using the 3 and 5 in box7. Common outcomes; r2c1=4, r9c1<>5.
 
 
W-Wing (56), SL 5 in c3; r3c8, r789c9<>6.
 
 
Looked like there might've been something with a possible BUG Lite on the 68s, but I didn't check for sure because it looked like one of the cells would've had too many excess candidates to do anything efficiently. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Clement
 
 
  Joined: 24 Apr 2006 Posts: 1113 Location: Dar es Salaam Tanzania
  | 
		
			
				 Posted: Mon Dec 26, 2011 6:55 pm    Post subject: rh122611 | 
				     | 
			 
			
				
  | 
			 
			
				| The Hiddden UR 35 in Grid r79c15; r9c1<>5 leads to a pair in 58 in r7c1 and r8c3. This opens an x-wing on 4 in r78; r2c2<>4 and the finned x-wing on 5 in r18; r9c9<>5 solves it. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		JC Van Hay
 
 
  Joined: 13 Jun 2010 Posts: 494 Location: Charleroi, Belgium
  | 
		
			
				 Posted: Mon Dec 26, 2011 7:49 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				A simple "wing" (again ...) : 8r7c1=(8-6)r7c6=6r8c6-(6=4)r8c2 : -4r7c1; stte.
 
 
That is ... (pivot : bilocal 6C6)
 
 
Either r7c6=6 -> r7c1=8; or r8c6=6 -> r8c2=4. In both cases, r7c1<>4. stte. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Mon Dec 26, 2011 9:31 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | JC Van Hay wrote: | 	 		  A simple "wing" (again ...) : 8r7c1=(8-6)r7c6=6r8c6-(6=4)r8c2 : -4r7c1; stte.
 
 | 	  Nice job JC. I was close; but you kocked it out of the park!    	  | Code: | 	 		   *--------------------------------------------------------------------*
 
 | 2      8      56     | 69     4      3      | 679    1      567    |
 
 |e346    469    7      | 689    1      5      | 689    369    2      |
 
 | 356    169    13     | 689    7      2      | 4      3569   3568   |
 
 |----------------------+----------------------+----------------------|
 
 | 1      5      4      | 3      9      7      | 68     2      68     |
 
 | 68     2      9      | 5      68     4      | 17     37     137    |
 
 | 7      3      68     | 2      68     1      | 5      4      9      |
 
 |----------------------+----------------------+----------------------|
 
 |d34568  146    2      | 7      35    c68     | 169    569    1456   |
 
 | 9     a46     568    | 1      2     b68     | 3      567    4567   |
 
 | 356    7      13     | 4      35     9      | 2      8      156    |
 
 *--------------------------------------------------------------------*
 
(4=6)r8c2-(6)r8c6=(6-8)r7c6=(8-4)r7c1=(4)r2c1 => r2c2<>4 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Tue Dec 27, 2011 1:22 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				If you perform Clement's finned X-Wing, then the <35> UR has strong links for r7c1<>3 that crack the puzzle with the help of a subsequent <58> Hidden Pair.
 
 
 	  | Code: | 	 		   finned X-Wing r18\c39                   <> 5    r79c9
 
 
 +-----------------------------------------------------------------------+
 
 |  2      8      56     |  69     4      3      |  679    1      567    |
 
 |  346    469    7      |  689    1      5      |  689    369    2      |
 
 |  356    169    13     |  689    7      2      |  4      3569   3568   |
 
 |-----------------------+-----------------------+-----------------------|
 
 |  1      5      4      |  3      9      7      |  68     2      68     |
 
 |  68     2      9      |  5      68     4      |  17     37     137    |
 
 |  7      3      68     |  2      68     1      |  5      4      9      |
 
 |-----------------------+-----------------------+-----------------------|
 
 | *34568  146    2      |  7     *35     68     |  169    569    146    |
 
 |  9      46     568    |  1      2      68     |  3      567    4567   |
 
 | *356    7      13     |  4     *35     9      |  2      8      16     |
 
 +-----------------------------------------------------------------------+
 
 # 67 eliminations remain
 
 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |