dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Difficult puzzle

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
leocar



Joined: 04 Mar 2010
Posts: 8

PostPosted: Thu Jun 03, 2010 9:25 am    Post subject: Difficult puzzle Reply with quote

Hi, I came across this puzzle but got stuck very early. Can someone please help me with the next step as I am at a loss. Thank you.
Leo


Code:

+----------------+-------------+----------------+
| 7    48   9    | 1    2  6   | 48   5    3    |
| 1    68   5    | 47   3  47  | 2689 2689 689  |
| 46   2    3    | 8    9  5   | 467  467  1    |
+----------------+-------------+----------------+
| 356  9    167  | 456  8  134 | 467  467  2    |
| 568  1567 4    | 2    56 19  | 3    6789 5689 |
| 2    356  68   | 4569 7  349 | 4689 1    5689 |
+----------------+-------------+----------------+
| 4689 467  678  | 679  1  2   | 5    3    689  |
| 3689 367  2678 | 5679 56 789 | 1    2689 4    |
| 5689 156  1268 | 3    4  89  | 2689 2689 7    |
+----------------+-------------+----------------+
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3344
Location: near Detroit, Michigan, USA

PostPosted: Thu Jun 03, 2010 12:15 pm    Post subject: Reply with quote

The next step is a hidden pair in B4. After that, I don't know.

Keith
Back to top
View user's profile Send private message
Steve R



Joined: 24 Oct 2005
Posts: 289
Location: Birmingham, England

PostPosted: Thu Jun 03, 2010 1:54 pm    Post subject: Reply with quote

You can place 3 in r8c2 using the contradiction:

r8c2 ≠3 => r8c1 = 3 => r4c1 ≠ 3 => r4c6 = 3 => r4c3 =1 => r5c2 =7 => r9c2 = 1 => r6c2 =5 => r8c2 = 3.

This gives

Code:
+---------------------------------------------+
| 7    48  9    | 1    2  6   | 48   5    3   |
| 1    68  5    | 47   3  47  | 2689 2689 689 |
| 46   2   3    | 8    9  5   | 467  467  1   |
-----------------------------------------------
| 3    9   17   | 5    8  14  | 467  467  2   |
| 568  17  4    | 2    6  19  | 3    789  589 |
| 2    56  68   | 49   7  3   | 489  1    589 |
-----------------------------------------------
| 4689 467 678  | 679  1  2   | 5    3    689 |
| 689  3   2678 | 5679 5  789 | 1    2689 4   |
| 5689 156 1268 | 3    4  89  | 2689 2689 7   |
+---------------------------------------------+

There are now conjugates with respect to 6 in b1 and c9. As they line up in r2, 6 can be eliminated from r7c1. It may also be eliminated from r8c1 using the contradiction

r8c1 = 6 => r8c4 ≠ 6 => r7c4 = 6 => r7c9 ≠ 6 => r2c9 = 6 => r2c2 = 8 => r3c1 = 6

We now have

Code:
+-------------------------------------------+
| 7    48  9    | 1   2 6   | 48   5    3   |
| 1    68  5    | 47  3 47  | 2689 2689 689 |
| 46   2   3    | 8   9 5   | 467  467  1   |
---------------------------------------------
| 3    9   17   | 5   8 14  | 467  467  2   |
| 58   17  4    | 2   6 19  | 3    789  589 |
| 2    56  68   | 49  7 3   | 489  1    589 |
---------------------------------------------
| 489  467 678  | 679 1 2   | 5    3    689 |
| 89   3   2678 | 679 5 789 | 1    2689 4   |
| 5689 156 1268 | 3   4 89  | 2689 2689 7   |
+-------------------------------------------+

when 4 can be placed in r7c1 using the contradiction

r7c1 ≠ 4 => r7c2 = 4 => r5c2 = 7 => r9c2 = 1 => r9c1 = 5 => r3c1 = 6 => r7c1 = 4.

The rest is intermediate rather than easy but you donít need any more chains unless you wish to use them.

Steve
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group