| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Fri Mar 07, 2008 10:48 am    Post subject: LA Times / Freep Fri Mar 7 | 
				     | 
			 
			
				
  | 
			 
			
				Interesting, this one:
 
 	  | Code: | 	 		  Puzzle: FP030708
 
+-------+-------+-------+
 
| . . . | 4 . . | . 9 6 | 
 
| . . 1 | 9 . 8 | . . . | 
 
| . . . | . 1 . | 7 8 . | 
 
+-------+-------+-------+
 
| . . . | . 5 . | . 4 . | 
 
| 6 2 . | . . . | . 3 9 | 
 
| . 8 . | . 9 . | . . . | 
 
+-------+-------+-------+
 
| . 1 5 | . 2 . | . . . | 
 
| . . . | 5 . 3 | 2 . . | 
 
| 2 4 . | . . 7 | . . . | 
 
+-------+-------+-------+ | 	  
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Johan
 
 
  Joined: 25 Jun 2007 Posts: 206 Location: Bornem  Belgium
  | 
		
			
				 Posted: Fri Mar 07, 2008 11:47 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| UR [37] in R12C15 opens up an xyz-wing, that solves the puzzle. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Earl
 
 
  Joined: 30 May 2007 Posts: 677 Location: Victoria, KS
  | 
		
			
				 Posted: Fri Mar 07, 2008 2:12 pm    Post subject: La | 
				     | 
			 
			
				
  | 
			 
			
				How does the 37 UR  (my grid has two unknowns) work?
 
 
A three-step XY-chain eliminates the 7 in R2C1 and opens the puzzle.
 
 
 
Earl | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		ravel
 
 
  Joined: 21 Apr 2006 Posts: 536
 
  | 
		
			
				 Posted: Fri Mar 07, 2008 2:23 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				There are at least 2 w-wings, which lead to the same xyz-wing. This also can be replaced by an xy-wing.
 
 	  | Earl wrote: | 	 		  | How does the 37 UR  (my grid has two unknowns) work? | 	  Strong link for 3 in row 1, for 7 in row 2: 
 
r1c1=3 => r1c5=7 => r2c5=3 => r2c1=7 
 
makes a deadly pattern | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Steve R
 
 
  Joined: 24 Oct 2005 Posts: 289 Location: Birmingham, England
  | 
		
			
				 Posted: Fri Mar 07, 2008 4:17 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Here is the (37) rectangle in r12c15:
 
 
 	  | Code: | 	 		  +------------------------------------------+
 
| 37+8 357 2378 | 4   37+ 25  | 1   9  6   |
 
| 37+4 6   1    | 9   37+ 8   | 34  2  5   |
 
| 349  359 239  | 26  1   256 | 7   8  34  |
 
--------------------------------------------
 
| 1    379 379  | 236 5   26  | 8   4  27  |
 
| 6    2   4    | 7   8   1   | 5   3  9   |
 
| 5    8   37   | 23  9   4   | 6   17 127 |
 
--------------------------------------------
 
| 37   1   5    | 8   2   9   | 34  6  347 |
 
| 789  79  6    | 5   4   3   | 2   17 178 |
 
| 2    4   38   | 1   6   7   | 9   5  38  |
 
+------------------------------------------+ | 	  
 
The two lower cells of the rectangle are conjugate with respect to 7 so, if r2c1 contains 4, r2c5 contains 7 and r1c5 contains 3. This would eliminate 3 from r1c1. However, if r2c1 does not contain 4, r1c1 must contain 8 to avoid the deadly pattern and again it cannot contain 3.
 
 
At the same time there is a (34) bent six:
 
 
 	  | Code: | 	 		  +------------------------------------------+
 
| 378  357 2378 | 4   37 25  | 1   9  6    |
 
| 34+7 6   1    | 9   37 8   | 34+ 2  5    |
 
| 34+9 359 239  | 26  1  256 | 7   8  34+  |
 
--------------------------------------------
 
| 1    379 379  | 236 5  26  | 8   4  27   |
 
| 6    2   4    | 7   8  1   | 5   3  9    |
 
| 5    8   37   | 23  9  4   | 6   17 127  |
 
--------------------------------------------
 
| 37   1   5    | 8   2  9   | 34+ 6  34+7 |
 
| 789  79  6    | 5   4  3   | 2   17 178  |
 
| 2    4   38   | 1   6  7   | 9   5  38   |
 
+------------------------------------------+ | 	  
 
Using the almost locked sets r7c1 and {r1c1, r7c1, r8c1} eliminates 3 from r2c1 and r3c1 as well.
 
 
These two patterns alone solve the puzzle.
 
 
Steve | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Fri Mar 07, 2008 9:04 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				What about the Type 6 UR that takes out <6> in R3C6 and R4C4?
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Fri Mar 07, 2008 9:10 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				xy-chain starting in r7c1 37-34-34-37  removes 7 in r2c1
 
 
xy-wing {378}  pivot in r7c1 removes 8 in r8c1
 
-------
 
just as a side note
 
 
another UR exists in boxes 6 and 9 on {1,7}  type 4 i believe. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Asellus
 
 
  Joined: 05 Jun 2007 Posts: 865 Location: Sonoma County, CA, USA
  | 
		
			
				 Posted: Sat Mar 08, 2008 12:28 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Lots of Deadly Pattern action here.  Interesting indeed.
 
 
Regarding Steve's nice bent six, the r178c1 ALS isn't necessary due to the strongly linked <4>s in r23c1.  (In fact, I'm not sure this two ALS approach would work without those strongly linked <4>s.  I suspect that only the <3> at r3c1 could be eliminated in that case without resorting to additional ALSs in b9 and r8.  However that may be...)  Those <4>s and the {37} bivalue at r7c1 are all that are required to eliminate the <3>s in r23c1.  Pretty nifty! | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Steve R
 
 
  Joined: 24 Oct 2005 Posts: 289 Location: Birmingham, England
  | 
		
			
				 Posted: Sat Mar 08, 2008 1:26 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Yes, the argument using the conjugates with respect to 4 is a much neater way of using the bent six … but I missed it.
 
 
When I wrote before I was pretty sure the als argument did the job as well. Now, a bottle of wine later, I am less certain. For what it’s worth my thinking was:
 
(1) The bent six must contain 7 or 9.
 
(2) 7 can be placed only in r2c1 orr7c9. Either puts 3 in r7c1 and eliminates it from r23c1.
 
(3) If there is no 7, r3c1 contains 9 (not 3). But then r1378c1 becomes a locked (3789) set so 3 may be eliminated from r2c1 as well.
 
 
Perhaps it is the wine talking!
 
 
Steve | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		ravel
 
 
  Joined: 21 Apr 2006 Posts: 536
 
  | 
		
			
				 Posted: Sat Mar 08, 2008 1:44 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Nice catch, Steve R, i understood it this way:
 
r2c1=7 or r7c9=7 => r7c1=3 => r123c3<>3
 
r3c1=9 => r178c1=378 => r23c1<>3 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |