| View previous topic :: View next topic | 
	
	
		| Author | Message | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Sat Sep 15, 2007 11:40 am    Post subject: DB Saturday Puzzle:  September 15, 2007 |   |  
				| 
 |  
				| I have not yet completed it ... 
 Keith 	  | Code: |  	  | Puzzle: DB091507  ****** +-------+-------+-------+
 | . . . | . . . | . 5 . |
 | . 2 7 | . . . | 3 . 4 |
 | . 5 . | . . 3 | 1 9 7 |
 +-------+-------+-------+
 | . . 1 | 2 . 4 | . . . |
 | 4 7 . | . . . | . 2 8 |
 | . . . | 8 . 9 | 7 . . |
 +-------+-------+-------+
 | 5 4 6 | 3 . . | . 1 . |
 | 7 . 3 | . . . | 5 6 . |
 | . 9 . | . . . | . . . |
 +-------+-------+-------+
 
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Earl 
 
 
 Joined: 30 May 2007
 Posts: 677
 Location: Victoria, KS
 
 | 
			
				|  Posted: Sat Sep 15, 2007 3:12 pm    Post subject: DB Saturday Sept 15 |   |  
				| 
 |  
				| I's stuck here.  Help! 
 Earl
 
 
 *-----------------------------------------------------------*
 | 139   13    49    | 7     148     18      | 2      5     6    |
 | 16     2       7    | 9     156    156     | 3      8     4    |
 | 68     5     48    | 46    2         3       | 1     9     7     |
 |-------------------+-------------------+-------------------|
 | 89    68     1     | 2         7         4   | 69    3      5    |
 | 4       7     59    | 156     3     156    | 69     2     8    |
 | 23    36    25    | 8       56         9    | 7      4     1     |
 |-------------------+-------------------+-------------------|
 | 5       4     6     |    3       9         7  | 8      1     2     |
 | 7     18     3      | 14     148        2  | 5      6     9     |
 | 12    9     28     | 156   1568  1568  | 4      7     3     |
 *-----------------------------------------------------------*
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| TKiel 
 
 
 Joined: 22 Feb 2006
 Posts: 292
 Location: Kalamazoo, MI
 
 | 
			
				|  Posted: Sat Sep 15, 2007 3:58 pm    Post subject: |   |  
				| 
 |  
				| From earl's position there is an extended XY-wing with <13> pivot in r1c2 that excludes 8 from r4c1. 
 (Edit:  Sorry about the wrong cell reference.)
 
 Last edited by TKiel on Sat Sep 15, 2007 10:26 pm; edited 3 times in total
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Sat Sep 15, 2007 4:00 pm    Post subject: |   |  
				| 
 |  
				| Earl's grid: 
 
  	  | Code: |  	  | --------------------------------------- | 139 13  49 | 7   148  18   | 2  5 6 |
 | 16  2   7  | 9   156  156  | 3  8 4 |
 | 68  5   48 | 46  2    3    | 1  9 7 |
 |--------------------------------------
 | 89  68  1  | 2   7    4    | 69 3 5 |
 | 4   7   59 | 156 3    156  | 69 2 8 |
 | 23  36  25 | 8   56   9    | 7  4 1 |
 |-------------------------------------
 | 5   4   6  | 3   9    7    | 8  1 2 |
 | 7   18  3  | 14  148  2    | 5  6 9 |
 | 12  9   28 | 156 1568 1568 | 4  7 3 |
 ---------------------------------------
 | 
 
 Two XY-Chains and a W-Wing did it for me.
 
 
  	  | Quote: |  	  | From earls; position there is an extended XY-wing (<13> pivot in r1c3 that excludes 8 from r4c1 | 
 
 Tracy, I guess you mean r1c2. I'm not seeing how an extension works here.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Johan 
 
 
 Joined: 25 Jun 2007
 Posts: 206
 Location: Bornem  Belgium
 
 | 
			
				|  Posted: Sat Sep 15, 2007 5:21 pm    Post subject: |   |  
				| 
 |  
				| From Earl's grid there is a 5-cell xy-chain that eliminates <8> in R4C1 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| TKiel 
 
 
 Joined: 22 Feb 2006
 Posts: 292
 Location: Kalamazoo, MI
 
 | 
			
				|  Posted: Sat Sep 15, 2007 9:25 pm    Post subject: |   |  
				| 
 |  
				| XY-wing with pivot in r1c2 <13>, pincers at r2c1 <16> and r6c2 <36>.  R2c1 extends to r3c1 <68>, r6c2 extends to r4c2 <68>.  Probably same XY-chain used by Johan. |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Sat Sep 15, 2007 10:04 pm    Post subject: |   |  
				| 
 |  
				|  	  | TKiel wrote: |  	  | XY-wing with pivot in r1c2 <13>, pincers at r2c1 <16> and r6c2 <36>.  R2c1 extends to r3c1 <68>, r6c2 extends to r4c2 <68>.  Probably same XY-chain used by Johan. | 
 
 In my perpetual state of confusion, I confused Extended XY-Wing with that thing you posted about a couple of days ago, which I seem to recall was an XY-Wing and you called it W-Wing with Coloring, or something like that, but it involved a three-cell chain starting with one of the pincer cells.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Ruud 
 
 
 Joined: 18 Jan 2006
 Posts: 31
 
 
 | 
			
				|  Posted: Sat Sep 15, 2007 10:28 pm    Post subject: |   |  
				| 
 |  
				| It would be interesting to know how earl eliminated 8 from r9c1. The best move I could find is a Sue-De-Coq on box 1 and column 1. A rare, but beautiful move. 
 Ruud
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Johan 
 
 
 Joined: 25 Jun 2007
 Posts: 206
 Location: Bornem  Belgium
 
 | 
			
				|  Posted: Sat Sep 15, 2007 10:35 pm    Post subject: |   |  
				| 
 |  
				| The 5-cell xy-chain could also be defined like Tracy said as an extended xy-wing. But you can also define the xy-wing as a short 3-cell xy-chain, either both ways uses the pincer-cells effect, to eliminate a candidate that can be seen by both cells.
 
 The 5-cell xy-chain, which erases <8> in R4C1, starting with <6> in R3C1.
 
 [86][61][13][36][68]
 
 
 
 
 
 
  	  | Code: |  	  | +-----------+---------------+--------+ |139 C13 49 | 7   148  18   | 2  5 6 |
 |B16  2  7  | 9   156  156  | 3  8 4 |
 |A68  5  48 | 46  2    3    | 1  9 7 |
 +-----------+---------------+--------+
 |-89 E68 1  | 2   7    4    | 69 3 5 |
 | 4   7  59 | 156 3    156  | 69 2 8 |
 | 23 D36 25 | 8   56   9    | 7  4 1 |
 +-----------+---------------+--------+
 | 5   4  6  | 3   9    7    | 8  1 2 |
 | 7   18 3  | 14  148  2    | 5  6 9 |
 | 128 9  28 | 156 1568 1568 | 4  7 3 |
 +-----------+---------------+--------+
 
 
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| TKiel 
 
 
 Joined: 22 Feb 2006
 Posts: 292
 Location: Kalamazoo, MI
 
 | 
			
				|  Posted: Sat Sep 15, 2007 10:43 pm    Post subject: |   |  
				| 
 |  
				| Ruud, 
 I'm not sure how earl did it, but there is a lowly old XY-chain that does it.
 
 <82><25><56><63><31><18> (forgive my improper notation).
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Earl 
 
 
 Joined: 30 May 2007
 Posts: 677
 Location: Victoria, KS
 
 | 
			
				|  Posted: Sun Sep 16, 2007 1:20 am    Post subject: DB puzzle Sept 15 |   |  
				| 
 |  
				| I used the (8) pincers of R3C1 and R8C2 (by an xy-chain 1-4-6-8) to eliminate 8 from R9C1.  But I failed to see the xy-chain from R3C1 to R4C2 (6-1-3-6-8) that eliminates 8 from R4C1 and solves the puzzle. 
 Earl
 
 (Edited by keith to disable smilies)
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Sun Sep 16, 2007 8:39 pm    Post subject: What is this called? |   |  
				| 
 |  
				| I've been away for the weekend, driving by Tracy's town, to Chicago and back.  I apologize if this has been covered.  This is the pinch point: 
 The shortest chain seems to be in the rectangle R18C25.  Sudoku Susser says: 	  | Code: |  	  | +----------------+----------------+----------------+ | 139  13   49   | 7    148  18   | 2    5    6    |
 | 16   2    7    | 9    156  156  | 3    8    4    |
 | 68   5    48   | 46   2    3    | 1    9    7    |
 +----------------+----------------+----------------+
 | 89   68   1    | 2    7    4    | 69   3    5    |
 | 4    7    59   | 156  3    156  | 69   2    8    |
 | 23   36   25   | 8    56   9    | 7    4    1    |
 +----------------+----------------+----------------+
 | 5    4    6    | 3    9    7    | 8    1    2    |
 | 7    18   3    | 14   148  2    | 5    6    9    |
 | 128  9    28   | 156  1568 1568 | 4    7    3    |
 +----------------+----------------+----------------+
 
 | 
 
 What would you experts call this chain? 	  | Code: |  	  | Found a 4-link Comprehensive Chain.  If we assume that square R1C5 is <1> then we can make the following chain of conclusions: 
 R8C5 must be <4> (C5 pin), which means that
 R8C2 must be <8> (R8 pin), which means that
 R1C2 must be <1> (C2 pin), which means that
 R1C5 can't be <1> (buddy contradiction).
 
 Since this is logically inconsistent, R1C5 cannot be <1>.
 
 | 
 
 Keith
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Asellus 
 
 
 Joined: 05 Jun 2007
 Posts: 865
 Location: Sonoma County, CA, USA
 
 | 
			
				|  Posted: Mon Sep 17, 2007 12:50 am    Post subject: |   |  
				| 
 |  
				| I'd call it an AIC (Alternate Implication Chain) that uses end-to-end strong ("conjugate") links.  In Eureka notation it can be written: 
 [1-4]R1C5=[4-8]R8C5=[8-1]R8C2=[1]R1C2-[1]R1C5; R1C5<>1
 
 The three links are 4=4 in C5, 8=8 in R8, and 1=1 in C2.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Asellus 
 
 
 Joined: 05 Jun 2007
 Posts: 865
 Location: Sonoma County, CA, USA
 
 | 
			
				|  Posted: Mon Sep 17, 2007 1:08 am    Post subject: |   |  
				| 
 |  
				| Medusa coloring easily produces an interesting result with Keith's grid: 
  	  | Code: |  	  | +-----------------+----------------+----------------+ |#13r9r 1r3g 49   | 7    148  18   | 2    5    6    |
 | 16    2    7    | 9    156  156  | 3    8    4    |
 | 68    5    48   | 46   2    3    | 1    9    7    |
 +-----------------+----------------+----------------+
 | 8r9g  6r8g 1    | 2    7    4    | 69   3    5    |
 | 4     7    59   | 156  3    156  | 69   2    8    |
 | 23    3r6g 25   | 8    56   9    | 7    4    1    |
 +-----------------+----------------+----------------+
 | 5     4    6    | 3    9    7    | 8    1    2    |
 | 7     18   3    | 14   148  2    | 5    6    9    |
 | 128   9    28   | 156  1568 1568 | 4    7    3    |
 +-----------------+----------------+----------------+
 | 
 We quickly get two "red" values in R1C1, which is not possible.  So all the "r" values are eliminated (a "Medusa Wrap") and the puzzle is solved.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		|  |