| 
 
	
		| View previous topic :: View next topic |  
		| Author | Message |  
		| Ajò Dimonios 
 
 
 Joined: 01 May 2017
 Posts: 339
 Location: Sassari Italy
 
 | 
			
				|  Posted: Fri May 19, 2017 9:56 pm    Post subject: Another extreme multifish |   |  
				| 
 |  
				| Ciao a tutti Paolo 	  | Code: |  	  | +--------------------+------------------+--------------------+
 | 7     1     269    | 2458  5689  3    | 289    2469  468   |
 | 8     2369  2369   | 1247  1679  2469 | 12379  5     13467 |
 | 2369  5     4      | 1278  16789 2689 | 123789 12679 13678 |
 +--------------------+------------------+--------------------+
 | 23469 7     23569  | 235   356   1    | 359    8     345   |
 | 1239  2389  123589 | 23578 4     258  | 6      179   1357  |
 | 1346  3468  13568  | 9     35678 568  | 1357   147   2     |
 +--------------------+------------------+--------------------+
 | 1239  2389  123789 | 6     13589 589  | 4      127   1578  |
 | 1346  3468  13678  | 13458 2     458  | 1578   167   9     |
 | 5     24689 12689  | 148   189   7    | 128    3     168   |
 +--------------------+------------------+--------------------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 |  |  
		| Back to top |  |  
		|  |  
		| Ajò Dimonios 
 
 
 Joined: 01 May 2017
 Posts: 339
 Location: Sassari Italy
 
 | 
			
				|  Posted: Sat May 20, 2017 10:15 am    Post subject: |   |  
				| 
 |  
				| After Multi-Fish pattern with base set of 2,4,6 and 9 	  | Code: |  	  | +----------------+----------------+----------------+
 | 7     1    269 | 2458 5689 3    | 289  2469 468  |
 | 8     269  3   | 1247 1679 2469 | 1279 5    1467 |
 | 269   5    4   | 178  178  269  | 1378 1269 1378 |
 +----------------+----------------+----------------+
 | 23469 7    269 | 235  356  1    | 359  8    345  |
 | 1239  2389 158 | 3578 4    258  | 6    179  1357 |
 | 1346  3468 158 | 9    3578 568  | 1357 147  2    |
 +----------------+----------------+----------------+
 | 1239  2389 178 | 6    1358 589  | 4    127  1578 |
 | 1346  3468 178 | 1358 2    458  | 1578 167  9    |
 | 5     2469 269 | 148  189  7    | 128  3    168  |
 +----------------+----------------+----------------+
 
 | 
 16 Truths = {2469R1, 2469R2, 2469R4, 2469R9}
 16 Links = {269c3, 24c4, 69c5, 29c7, 46c9,R1C8,R2C2,R2C6,R4C1,R9C2}
 19 Eliminations:  R2C2<>3,R4C1<>3,R9C2<>8,R3C4<>2,R3C5<>6,R3C5<>9,R3C7<>2,R3C7<>9,R3C9<>6, R5C3<>2,R5C3<>9,R5C4<>2,R6C3<>6,R6C5<>6,R7C3<>2,R7C3<>9,R7C5<>9,R8C3<>6,R8C4<4>
 Naked-quads of-1378 at r3c4579=> -1 r3c8, -3 r3c1, -7 r3c8, -8 r3c6
 Naked quads of 1578 at r5678c3 => -1 r9c3, -5 r4c3, -8 r9c3
 
 Play this puzzle online at the Daily Sudoku site
 |  |  
		| Back to top |  |  
		|  |  
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Sat May 20, 2017 1:30 pm    Post subject: |   |  
				| 
 |  
				| Continuous All Cell Loop : 	  | Code: |  	  | +------------------------+-----------------------+-----------------------+ | 7       1       269    | 2458    5689    3     | 289     2469    468   |
 | 8       2369    2369   | 1247    1679    2469  | 12379   5       13467 |
 | 2369    5       4      | 1278    16789   269-8 | 123789  269-17  13678 |
 +------------------------+-----------------------+-----------------------+
 | 2469-3  7       269-35 | (235)   (356)   1     | (359)   8       (345) |
 | 1239    2389    123589 | 3578-2  4       (258) | 6       (179)   1357  |
 | 1346    3468    13568  | 9       3578-6  (568) | 1357    (147)   2     |
 +------------------------+-----------------------+-----------------------+
 | 1239    2389    123789 | 6       1358-9  (589) | 4       (127)   1578  |
 | 1346    3468    13678  | 1358-4  2       (458) | 1578    (167)   9     |
 | 5       2469-8  269-18 | (148)   (189)   7     | (128)   3       (168) |
 +------------------------+-----------------------+-----------------------+
 
 | 
 The 16 cells P={R49C4579, R5678C68} is a proper valid subset of
 the 16 constraints C={(35)R4, (49)B6, (17)C8, (26)B9, (18)R9, (49)B8, (58)C6, (26)B5}.
 Therefore, the set C-P={3r4c1, (35)r4c3, (17)r3c8, 8r9c2, (18)r9c3, 4r8c4, 9r7c5, 8r3c6, 2r5c4, 6r6c5} of 13 candidates is excluded.
 
 HQ(1578)r5678c3; L2C3=3; HQ(1578)r3c4579
 
 Solving P :
 1.  (26)r4c45 -> (26)r9c79 & r49c3=9!
 2.  (26)r56c6 -> (26)r78c8 & r3c68=9!
 3a. 2r4c4 + 6r6c6 + 9r4c7 + 9r7c6 -> 0 solution via XWing{2C38}
 3b. 2r4c4 + 6r6c6 + 9r4c7 + 9r9c5 -> 0 solution via XWing{1C18} -> NP(58)r5c36 -> Swordfish{5R148}
 3c. 2r4c4 + 6r6c6 + 9r5c8 + 9r7c6 -> 0 solution via XWing{5R47}
 3d. 2r4c4 + 6r6c6 + 9r5c8 + 9r9c5 -> 0 solution via NP(35)r4c57, NP(58)r57c6, Swordfish{6C258}
 4a. 2r5c6 + 6r4c5 + 9r4c7 + 9r7c6 + 2L7C8 -> 0 solution
 4b. 2r5c6 + 6r4c5 + 9r4c7 + 9r7c6 + 2L9C7 -> 0 solution via NP(69)r9c23, XYWing(358)r6c26.r4c4
 4c. 2r5c6 + 6r4c5 + 9r4c7 + 9r9c5 -> 0 solution via XWing{5R47}
 4d. 2r5c6 + 6r4c5 + 9r5c8 + 9r7c6 -> 0 solution via XWing{1C18} -> NP(58)r6c36 -> XWing{5C67}
 |  |  
		| Back to top |  |  
		|  |  
		| Ajò Dimonios 
 
 
 Joined: 01 May 2017
 Posts: 339
 Location: Sassari Italy
 
 | 
			
				|  Posted: Sun May 21, 2017 1:59 pm    Post subject: |   |  
				| 
 |  
				| I continue from my previous post. When each of the 2s in pair r4c4, r5c6 are made true in turn, and then the 9 at r1c8 is made true, there is a contradiction, so 9 can be removed.
 When each of the 2s in pair r7c8, r9c7 are made true in turn, and then the 5 at r7c5 is made true, there is a contradiction, so 5 can be removed.
 If 5 is true in r5c6 then the 9 at r9c2 is both true and false, hence 5 is false and can be eliminated
 If 6 is true in r4c1 then the 2 at r7c8 is both true and false, hence 6 is false and can be eliminated
 When each of the 2s in pair r4c4, r5c6 are made true in turn, and then the 2 at r2c7 is made true, there is a contradiction, so 2 can be removed.
 If 2 is true in r9c2 then the 9 at r1c5 is both true and false, hence 2 is false and can be eliminated
 
 Similarly, contradiction is created by imposing values individually on the cells:
 R1C3=2;R1C5=6; R1C8=6; R1C9=4; R1C5=8; R1C5=9; R1C9=8; R2C4=1; R2C7=1; R2C9=1; R2C4=7; R5C2=3; R5C4=3; R5C8=1 and R7C1=9. So these candidates can be eliminated. Solution with basic strategies
 
 
  	  | Code: |  	  | +---------------+----------------+---------------+
 | 7    1    69  | 2458 5    3    | 289  24  6    |
 | 8    269  3   | 24   1679 2469 | 79   5   467  |
 | 269  5    4   | 1278 178  269  | 1378 269 1378 |
 +---------------+----------------+---------------+
 | 2469 7    269 | 35   356  1    | 359  8   345  |
 | 1239 289  158 | 578  4    28   | 6    79  1357 |
 | 1346 3468 158 | 9    3578 568  | 1357 147 2    |
 +---------------+----------------+---------------+
 | 123  2389 178 | 6    138  589  | 4    127 1578 |
 | 1346 3468 178 | 1358 2    458  | 1578 167 9    |
 | 5    469  269 | 148  189  7    | 128  3   168  |
 +---------------+----------------+---------------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 Ciao a tutti
 Paolo
 |  |  
		| Back to top |  |  
		|  |  
		|  |  
  
	| 
 
 | You cannot post new topics in this forum You cannot reply to topics in this forum
 You cannot edit your posts in this forum
 You cannot delete your posts in this forum
 You cannot vote in polls in this forum
 
 |  
 Powered by phpBB © 2001, 2005 phpBB Group
 
 |