| View previous topic :: View next topic | 
	
	
		| Author | Message | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Wed Sep 08, 2010 2:30 am    Post subject: Puzzle 10/09/08: C |   |  
				| 
 |  
				|  	  | Code: |  	  | +-----------------------+ | 8 . 4 | 3 2 . | . 7 9 |
 | . . 2 | 5 . . | . 3 8 |
 | 5 7 . | . . . | . . . |
 |-------+-------+-------|
 | 1 3 . | 2 . . | . 6 . |
 | 2 . . | . . . | . . 4 |
 | . . . | . . . | . 9 . |
 |-------+-------+-------|
 | . . . | . . . | 9 . . |
 | 3 5 . | 9 . 2 | . 8 6 |
 | 7 4 . | . 8 . | . 2 . |
 +-----------------------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 
 
 
  	  | Rating wrote: |  	  | Extreme/XY 
 Extreme as single-stepper; XY if other steps applied first.
 
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Wed Sep 08, 2010 9:10 am    Post subject: |   |  
				| 
 |  
				|  	  | Quote: |  	  | X Wing (4)C48/r37 : r37C567<>4 M Wing (47) : (47)R8C5 7R2 4C6 : (4)r8c5=(4)r4c6 : => r4c5<>4
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| peterj 
 
 
 Joined: 26 Mar 2010
 Posts: 974
 Location: London, UK
 
 | 
			
				|  Posted: Wed Sep 08, 2010 6:21 pm    Post subject: |   |  
				| 
 |  
				| I played the same wing as JC initially.. 
 I went back to find this one-step ALS move...
 
  	  | Quote: |  	  | AIC with ALS (4=9)r4c5 - ANQ(1467):(9)r3c5=(1467)r1c6|r2c56|r3c5 - (4)r3c4=r7c4 ; r8c5<>4 You could also see it as an (89)AHP but to me less clear...
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Mogulmeister 
 
 
 Joined: 03 May 2007
 Posts: 1151
 
 
 | 
			
				|  Posted: Wed Sep 08, 2010 7:03 pm    Post subject: |   |  
				| 
 |  
				| This one stepper perhaps: 
 (4=9)r4c5-r4c6=(9-8)r3c6=(8-4)r3c4=r7c4; r8c5<>4
 
 Worked on this before seeing Peter's - similar but without the ANQ
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Wed Sep 08, 2010 7:07 pm    Post subject: |   |  
				| 
 |  
				| Peter, congratulations   
 Just a comment on your AIC.
 
 From the "hub" cell R3C6 (2 spokes from 8 & 9), one can write :
 SIS[(8-4)r3c4=r7c4,(9-4)r4c6=r4c5] or 4-SIS AIC : 4C4 8R3 9C6 4R4 : (4)r7c4=(4)r4c5 : => r78c5<>4.Thus a 4-SIS AIC (4 strong links and 3 weak links) with 4 strengths in location  instead of a 6-SIS AIC (6 strong links and 5 weak links) with 5 cells and 1 strength in location , even though the grouping of cells leads to an apparent AIC with 3 SL and 2 WL. 
 Regards, JC
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Mogulmeister 
 
 
 Joined: 03 May 2007
 Posts: 1151
 
 
 | 
			
				|  Posted: Wed Sep 08, 2010 8:16 pm    Post subject: |   |  
				| 
 |  
				| Prior to finding the AIC above, I was working on this puzzle looking at ALS and encountered an interesting ALS xz situation.  It didn't lead to a one step move but was interesting (to me) nonetheless as personally, I had not seen this situation before: (Danny and Ronk probably have a stash of them) 
 We have a situation where the x and z or restricted common and common candidates can do each others job - that is to say, become interchangeable:
 
 A={1,4,6,7,9}
 B={1,6}
 x = 1 or 6 (r23c5)
 z = 1 or 6 (r23c5)
 
 We can therefore eliminate both 1 and 6 from r2c6 and r3c46
 
 
 
 
  	  | Code: |  	  | +----------------------+----------------------+----------------------+ | 8      16     4      | 3      2      B16    | 5      7      9      |
 | 9      16     2      | 5      A1467  47-16  | 146    3      8      |
 | 5      7      3      |48-16   A1469 489-16  | 1246   14     12     |
 +----------------------+----------------------+----------------------+
 | 1      3      57     | 2      A49    49     | 8      6      57     |
 | 2      9      567    | 1678   13567  135678 | 137    15     4      |
 | 4      8      567    | 167    13567  13567  | 1237   9      12357  |
 +----------------------+----------------------+----------------------+
 | 6      2      8      | 147    13457  13457  | 9      145    1357   |
 | 3      5      1      | 9      A47    2      | 47     8      6      |
 | 7      4      9      | 16     8      1356   | 13     2      135    |
 +----------------------+----------------------+----------------------+
 
 No cigar but fun anyway!
 
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| ronk 
 
 
 Joined: 07 May 2006
 Posts: 398
 
 
 | 
			
				|  Posted: Wed Sep 08, 2010 8:33 pm    Post subject: |   |  
				| 
 |  
				|  	  | Mogulmeister wrote: |  	  | We have a situation where the x and z or restricted common and common candidates can do each others job - that is to say, become interchangeable: 
 A={1,4,6,7,9}
 B={1,6}
 x = 1 or 6 (r23c5)
 z = 1 or 6 (r23c5)
 
 We can therefore eliminate both 1 and 6 from r2c6 and r3c46
 | 
 Congratulations, you've found a doubly-linked ALS-xz, this one aka a Sue De Coq. There are four more eliminations, but I won't spoil the fun by telling you what they are.
  |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Wed Sep 08, 2010 9:24 pm    Post subject: |   |  
				| 
 |  
				| It's already obvious that there are better solutions available, but I still find this interesting. Besides the X-Wing (#) used by JC, there's a conjugate Swordfish (*) network that can be embedded in a discontinuous loop: 
 
  	  | Code: |  	  | Swordfish *********************************
 (4)r4c5 - r8c5 = r8c7 - r2c7 = (4-7)r2c6 = r2c5 - (7=4)r8c5 - (4)r4c5
 +--------------------------------------------------------------------------------+
 |  8       16      4       |  3       2       16      |  5       7       9       |
 |  9       16      2       |  5      *1467   *1467    | *146     3       8       |
 |  5       7       3       | #1468    1469    14689   |  1246   #14      12      |
 |--------------------------+--------------------------+--------------------------|
 |  1       3       57      |  2      *49     *49      |  8       6       57      |
 |  2       9       567     |  1678    13567   135678  |  137     15      4       |
 |  4       8       567     |  167     13567   13567   |  1237    9       12357   |
 |--------------------------+--------------------------+--------------------------|
 |  6       2       8       | #147     13457   13457   |  9      #145     1357    |
 |  3       5       1       |  9      *47      2       | *47      8       6       |
 |  7       4       9       |  16      8       1356    |  13      2       135     |
 +--------------------------------------------------------------------------------+
 # 90 eliminations remain
 
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| tlanglet 
 
 
 Joined: 17 Oct 2007
 Posts: 2468
 Location: Northern California Foothills
 
 | 
			
				|  Posted: Wed Sep 08, 2010 10:11 pm    Post subject: |   |  
				| 
 |  
				| I finally took some time to work on a puzzle. I did not find anything similar to the great solutions already posted, but I did find a circumstance which I do not fully appreciate/understand. 
 
  	  | Code: |  	  | *-----------------------------------------------------------------------------*
 | 8       16      4       | 3       2       16      | 5       7       9       |
 | 9       16      2       | 5       1467    1467    | 146     3       8       |
 | 5       7       3       | 1468    1469    14689   | 1246    14      12      |
 |-------------------------+-------------------------+-------------------------|
 | 1       3       57      | 2       49      49      | 8       6       57      |
 | 2       9       567     | 1678    13567   135678  |*137     15      4       |
 | 4       8       567     | 167     13567   13567   |*1237    9       12357   |
 |-------------------------+-------------------------+-------------------------|
 | 6       2       8       | 147     13457   13457   | 9       145     1357    |
 | 3       5       1       | 9       47      2       | 47      8       6       |
 | 7       4       9       | 16      8       1356    |*13      2       135     |
 *-----------------------------------------------------------------------------*
 | 
 Consider the ANT(1237)r569c7, marked *.
 
 ANT(2=137)r569c7-(7)r8c7=(7)r7c9-(7=5)r4c9-(5=1)r5c8
 
 What now? I don't believe that we have a contradiction on 1 since r5c8=1 does not see all three occurrences of 1 in the ls:(137)r569c7. But does this circumstance cause r9c7=1? If so, then
 
 ANT(2=137)r569c7-(7)r8c7=(7)r7c9-(7=5)r4c9-(5=1)r5c8*-LS(137)r569c7[(1)r56c7=(1)r9c7]-(1)r23c7|r3c8*=(1-2)r3c9=(2)r6c9; r6c7<>2 to complete.
 
 Ted
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Wed Sep 08, 2010 11:05 pm    Post subject: |   |  
				| 
 |  
				|  	  | daj95376 wrote: |  	  | It's already obvious that there are better solutions available, but I still find this interesting. Besides the X-Wing (#) used by JC, there's a conjugate Swordfish (*) network that can be embedded in a discontinuous loop: 
 
  	  | Code: |  	  | Swordfish *********************************
 (4)r4c5 - r8c5 = r8c7 - r2c7 = (4-7)r2c6 = r2c5 - (7=4)r8c5 - (4)r4c5
 +--------------------------------------------------------------------------------+
 |  8       16      4       |  3       2       16      |  5       7       9       |
 |  9       16      2       |  5      *1467   *1467    | *146     3       8       |
 |  5       7       3       | #1468    1469    14689   |  1246   #14      12      |
 |--------------------------+--------------------------+--------------------------|
 |  1       3       57      |  2      *49     *49      |  8       6       57      |
 |  2       9       567     |  1678    13567   135678  |  137     15      4       |
 |  4       8       567     |  167     13567   13567   |  1237    9       12357   |
 |--------------------------+--------------------------+--------------------------|
 |  6       2       8       | #147     13457   13457   |  9      #145     1357    |
 |  3       5       1       |  9      *47      2       | *47      8       6       |
 |  7       4       9       |  16      8       1356    |  13      2       135     |
 +--------------------------------------------------------------------------------+
 # 90 eliminations remain
 
 | 
 | 
 Danny, nice move, congratulations
  Here is an equivalent interpretation based on the Finned X-Wing on 4 in the rows 2 & 8 (same set of SIS): 4-SIS t chain : [4R8 4R2] 7R2 (74)R8C5 : [X Wing (4)R82/c57]=(4-7)r2c6=r2c5-(7=8)r8c5 : (4)r2c5[z term in the t chain]=(4)r8c5 : => r347c5<>4Regards, JC |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Thu Sep 09, 2010 1:12 am    Post subject: |   |  
				| 
 |  
				| Ted, nice find too. Congratulations   
 The first chain you wrote eliminates (1)r6c7 (Note : the SIS 7B9 is superfluous). The second chain is a continuous network.
 Let me rewrite it so as to make as clear as possible the strong and the weak inferences :
 
  	  | Code: |  	  | *------------------------------------------------------------------------------* | 8       16      4       | 3       2       16      | 5       7       9        |
 | 9       16      2       | 5       1467    1467    |[1*]46   3       8        |
 | 5       7       3       | 1468    1469    14689   |[1*]246 [1**]4  [1][2]    |
 |-------------------------+-------------------------+--------------------------|
 | 1       3       57      | 2       49      49      | 8       6      [57]      |
 | 2       9       567     | 1678    13567   135678  |[1*37]  [1**5]   4        |
 | 4       8       567     | 167     13567   13567   |[1*237]  9       1[2]3-5-7|
 |-------------------------+-------------------------+--------------------------|
 | 6       2       8       | 147     13457   13457   | 9      -145     1357     |
 | 3       5       1       | 9       47      2       | 47      8       6        |
 | 7       4       9       | 16      8       1356    |[1*3]    2       135      |
 *------------------------------------------------------------------------------*
 | 
 7-SIS continuous t loop or Symmetric Pigeonhole Matrix :
There are 7 WIS : [1*c7 3c7 7c7] 7b6 5b6 1**c8 r3c9. Therefore, as in a Finless Fish (equal number of SIS and WIS), the weak links become strong.
 [(2371*)R6C7 (31*)R9C7 (31*7)R5C7] (75)R4C9 (51**)R5C8 (1*1**1)B3 2C9 loop
 
 (2)r6c7=NT(1*37)r569c7-(7=5)r4c9-(5=1**)r5c8 (pause)-{(1*)r23c7,(1**)r3c8}=(1)r3c9-(2)r3c9=(2)r6c9 loop : => (pause r6c7<>1), r6c9<>7, r6c9<>5, r7c8<>1.
 
 Eliminations :
 (2)r6c7=(1)r5c8 : => r6c7<>1 (pause)
Regards, JC(7)r569c7=(7)r4c9 : => r6c9<>7
 (5)r4c9=(5)r5c8 : => r6c9<>5
 (1**)r5c8=(1**)r3c8 : => r7c8<>1
 the last WL is already strong : => no elimination
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Thu Sep 09, 2010 2:19 am    Post subject: |   |  
				| 
 |  
				|  	  | tlanglet wrote: |  	  |  	  | Code: |  	  | *-----------------------------------------------------------------------------*
 | 8       16      4       | 3       2       16      | 5       7       9       |
 | 9       16      2       | 5       1467    1467    | 146     3       8       |
 | 5       7       3       | 1468    1469    14689   | 1246    14      12      |
 |-------------------------+-------------------------+-------------------------|
 | 1       3       57      | 2       49      49      | 8       6       57      |
 | 2       9       567     | 1678    13567   135678  |*137     15      4       |
 | 4       8       567     | 167     13567   13567   |*1237    9       12357   |
 |-------------------------+-------------------------+-------------------------|
 | 6       2       8       | 147     13457   13457   | 9       145     1357    |
 | 3       5       1       | 9       47      2       | 47      8       6       |
 | 7       4       9       | 16      8       1356    |*13      2       135     |
 *-----------------------------------------------------------------------------*
 | 
 ANT(2=137)r569c7-(7)r8c7=(7)r7c9-(7=5)r4c9-(5=1)r5c8
 
 | 
 As JC mentioned, I see a conclusion of r6c7<>1.
 
 
  	  | Quote: |  	  | ANT(2=137)r569c7-(7)r8c7=(7)r7c9-(7=5)r4c9-(5=1)r5c8*-LS(137)r569c7[(1)r56c7=(1)r9c7]-(1)r23c7|r3c8*=(1-2)r3c9=(2)r6c9; r6c7<>2 to complete. 
 | 
 I don't agree with your conclusion here because your initial premise is that r6c7<>2 and so you already have the strong link (2)r6c7=(2)r6c9 without running around most of [stack 3].
 
 It does appear that you (almost) have a continuous networked loop:
 
 ...=(2)r6c9-(2)r6c7
 
 I'm guessing this is what JC derived. I'll let you check to see if the eliminations match those from JC's handywork. Personally, I wouldn't go near a continuous networked loop with a 20-foot pole!
 
 Regards, Danny
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| ronk 
 
 
 Joined: 07 May 2006
 Posts: 398
 
 
 | 
			
				|  Posted: Thu Sep 09, 2010 11:28 am    Post subject: |   |  
				| 
 |  
				|  	  | JC Van Hay wrote: |  	  |  	  | Code: |  	  | *------------------------------------------------------------------------------* | 8       16      4       | 3       2       16      | 5       7       9        |
 | 9       16      2       | 5       1467    1467    |[1*]46   3       8        |
 | 5       7       3       | 1468    1469    14689   |[1*]246 [1**]4  [1][2]    |
 |-------------------------+-------------------------+--------------------------|
 | 1       3       57      | 2       49      49      | 8       6      [57]      |
 | 2       9       567     | 1678    13567   135678  |[1*37]  [1**5]   4        |
 | 4       8       567     | 167     13567   13567   |[1*237]  9       1[2]3-5-7|
 |-------------------------+-------------------------+--------------------------|
 | 6       2       8       | 147     13457   13457   | 9      -145     1357     |
 | 3       5       1       | 9       47      2       | 47      8       6        |
 | 7       4       9       | 16      8       1356    |[1*3]    2       135      |
 *------------------------------------------------------------------------------*
 | 
 7-SIS continuous t loop or Symmetric Pigeonhole Matrix :
 [(2371*)R6C7 (31*)R9C7 (31*7)R5C7] (75)R4C9 (51**)R5C8 (1*1**1)B3 2C9 loop
 
 (2)r6c7=NT(1*37)r569c7-(7=5)r4c9-(5=1**)r5c8 (pause)-{(1*)r23c7,(1**)r3c8}=(1)r3c9-(2)r3c9=(2)r6c9 loop : => (pause r6c7<>1), r6c9<>7, r6c9<>5, r7c8<>1.
 | 
 Hmm, in this case two separate moves can be more elegant than one. If not more elegant, then at least easier to understand.
 
 ALS-xz: (1=3)[r4c9,r5c78] - (3=1)r9c7 ==> r6c7<>1
 
 AIC: (5=7)r4c9 - (7)r7c9 = (7-4)r8c7 = (4-5)r7c8 = (5)r5c8 - loop ==> r6c9<>7, r7c8=45, r6c9<>5
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Fri Sep 10, 2010 12:47 am    Post subject: |   |  
				| 
 |  
				| Type 1 UR (16) sets up W-Wing (47)
 Multi-coloring (4) + one extension
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		|  |