dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

French's forum - 292 hard

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
ttt



Joined: 06 Dec 2008
Posts: 42
Location: vietnam

PostPosted: Sat Dec 06, 2008 9:08 am    Post subject: French's forum - 292 hard Reply with quote

Hi All,
Iím new , but I know some of you here - especially Adam, Danny, ravelÖ Very Happy
Bellow puzzle from Frenchís forum here : #292-hard.
Code:
*-----------*
 |1..|...|..2|
 |.34|..1|...|
 |.2.|.5.|.6.|
 |---+---+---|
 |..7|4..|..8|
 |...|.9.|...|
 |3..|..8|5..|
 |---+---+---|
 |.5.|.6.|.4.|
 |...|7..|89.|
 |4..|...|..3|
 *-----------*
 
 *-----------------------------------------------------------------------------*
 | 1       6789    5689    | 3689    3478    34679   | 3479    3578    2       |
 | 56789   3       4       | 2689    278     1       | 79      578     579     |
 | 789     2       89      | 389     5       3479    | 13479   6       1479    |
 |-------------------------+-------------------------+-------------------------|
 | 2569    169     7       | 4       123     2356    | 12369   123     8       |
 | 2568    1468    12568   | 12356   9       23567   | 123467  1237    1467    |
 | 3       1469    1269    | 126     127     8       | 5       127     14679   |
 |-------------------------+-------------------------+-------------------------|
 | 2789    5       12389   | 12389   6       239     | 127     4       17      |
 | 26      16      1236    | 7       1234    2345    | 8       9       156     |
 | 4       16789   12689   | 12589   128     259     | 1267    1257    3       |
 *-----------------------------------------------------------------------------*


01. (hp78)r7c1/r9c2=(8)r79c3-(8=9)r3c3-(9)r79c3=(hp79)r7c1/r9c2
=> loop => r7c1#2, r9c2#16, r1c3#89, r5c3#8, r6c3#9
02. 6ís r6c3=r6c4-r2c4=r2c1 => r1c3, r45c1#6, single r1c3=5
03. 6ís r6c4=r6c3-r9c3=r9c7-r8c9=r5c9 => r5c346#6
04. (hp79=5)r2c89-(5=hp16)r8c29-(6)r8c1=96)r2c1 => r2c1#79
05. 9ís r6c9=r6c2-r1c2=r3c13 => r3c9#9
06. Present as diagram: => r5c79#7
Code:
AALS(46)r5c279 
 ||
(46)r5c79
 ||
(4)r5c2-(4)r6c2=(4)r6c9ó-(4=hp17)r37c9
 ||                    |
 ||                     -(9)r6c9=(9)r4c7-(9=7)r2c7
 ||
(6)r5c2--(6)r6c3=(6)r6c4-(6)r12c4=(6)r1c6--------------(7)r1c6
       |                                 |              ||
       |                                  --(4)r1c6     ||
       |                                     ||         ||
        ----------(6)r5c9=(6-5)r8c9=(5)r8c6-(4)r8c6     ||
                                             ||         ||
                                            (4)r3c6----(7)r3c6
                                                        ||
                                                       (7)r5c6

07. Kraken column: => r2c9#9, some singles

Code:
(8)r1c2-(8)r1c8=(8-5)r2c8=(5)r2c9
 ||
(8-4)r5c2=(4)r6c2-(4=9)r6c9
 ||
(8-7)r9c2=(7)r9c7-(7=9)r2c7

08. (1)r3c7=(1)r3c9-(1=7)r7c9-(7=5)r2c9-(5=8)r2c8-(8=3)r1c8 => r3c7#3
09. (hp12=6)r56c3-(6)r6c4=(6-5)r4c6=(5-9)r4c1=(9)r4c2 => r4c1#1
10. (9)r4c2=(9-5)r4c1=(5)r4c6-(5)r8c6=(5-6)r8c9=(6-7)r9c7=(7)r9c2 => r9c2#9
11. Kraken cell: => r1c2#9, single r4c2=9

Code:
(9)r1c4
 ||
(6)r1c4-(6)r1c6=(6)r4c6-(6=9)r4c2
 ||
(8)r1c4-(8)r1c8=(8-5)r2c8=(5)r2c9-(5)r8c9=(5)r8c6-(5)r4c6=(5-9)r4c1=(9)r4c2

12. (6)r4c6=(6)r4c7-(6)r5c9=(6-5)r8c9=(5)r8c6 => r4c6#5, single r4c1=5
13. (6)r9c3=(6-7)r9c7=(7)r9c2-(7=9)r7c1 => r9c3#9, SSTS to the end

Edit: when I use "<>" to show eliminations I can't preview then I had to use " # "...
Thanks to all,

ttt
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Dec 07, 2008 1:33 am    Post subject: Reply with quote

ttt wrote:
when I use "<>" to show eliminations I can't preview then I had to use " # "

Try using the "Disable HTML in this post" option.
Back to top
View user's profile Send private message Visit poster's website
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Dec 07, 2008 2:13 am    Post subject: Reply with quote

Some comments on this solution that may help others not so comfortable with all of the notation.

01: This is a 123689 Sue de Coq in b7 and c3. (A naked quad results.)
02: This is a Skyscraper.
03: This can be seen as (multi)coloring. Alternately, it is a Kite in r9 and c9 (for r5c3<>6), with pincer transport from r9c3 to r6c4 (for r5c46<>6).
04: There are some typos:
(hp79=5)r2c79-(5=hp16)r8c29-(6)r8c1=(6)r2c1 => r2c1<>79
An alternate way to write the same thing:
(79)r2c1 - ALS[{79}r2c79=(5)r2c9] - ALS[(5)r8c9=(6)r8c29] - (6)r8c1=[6-(79)]r2c1; r2c1<>79

05: This is an ER (in b1 with conjugate pair in r6).

06: For me, the start of this multiply-branched AIC is clearer this way:
Code:
                                (4)r6c2 ...
                              /
(7)r5c79 - {46}r5c79=(46)r5c2 - (6)r6c3 ...
                              \
                                (6)r5c9 ...

The remaining steps are what they are with no further comments except for a typo in 09: r4c2<>1.

After step 13, it is still a multiple step slog until the puzzle is solved.

A note on my "{}" notation: I use this to denote a set, as opposed to a group. A set is true when all of its members are true and false in all other cases. A group of digits is shown in parentheses and is false when all of its members are false and true in all other cases.
Back to top
View user's profile Send private message Visit poster's website
ttt



Joined: 06 Dec 2008
Posts: 42
Location: vietnam

PostPosted: Sun Dec 07, 2008 7:16 am    Post subject: Reply with quote

Hi Asellus,

Thank you very much!

Asellus wrote:
06: For me, the start of this multiply-branched AIC is clearer this way:
Code:
                                (4)r6c2 ...
                              /
(7)r5c79 - {46}r5c79=(46)r5c2 - (6)r6c3 ...
                              \
                                (6)r5c9 ...


In fact, I found this step based on considering (46)r5c279 on row 5 and viewed it as AALS.

Thanks again,
ttt
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group